Spring barley growth and development guide (2023)

  1. Home
  2. Crop production
  3. Small grains
  4. Growing small grains
  5. Spring barley growth and development guide

Understanding barley growth and development is essential for profitable production.

This is because many of today’s agricultural chemicals must be applied at critical times, which means producers must recognize barley growth stages.

By using physiological maturity indicators, you can make harvest decisions that will maximize crop yield potential.

How barley develops

|

Barley (Hordeum vulgare L.) originated in the Eastern Mediterranean region.

Spring barley growth and development guide (1)

Head type and growth habits

You can distinguish barley by differences in head type and growth habits. In a six-rowed barley, three kernels form at each node of the head, while in a two-rowed type, only a single kernel forms at each node (Figure 1).

Temperature requirements

Barley is also classed by its requirement for cold temperatures. Winter barley seedlings must be exposed to cold temperatures (vernalization), which enables it to normally produce heads and grain later.

Winter barley is usually sown in the fall for exposure to low temperatures during the winter. It then completes development the following spring and summer. Spring barley doesn’t require exposure to winter temperatures and can be sown in spring. Winter types usually mature somewhat earlier than spring types.

Spring barley growth and development guide (2)

Here, we’ll consider the growth and development of the six-rowed spring barley commonly grown in Minnesota.

Figure 2 shows major developmental stages in spring barley with the approximate time and heat units required to reach each stage. Differences in maturity exist among varieties. For simplicity, Figure 2 does not show tillers beyond the advanced tillering stage.

Barley production has become more intense and complex. Crop managers must understand barley development and be able to recognize growth stages because of the increased use of growth-stage-sensitive production inputs such as chemical fertilizers, pesticides and growth regulators.

Growth staging systems

A number of staging systems have evolved for describing the development of cereal crops such as barley.

We describe the Zadoks system, which is the most comprehensive and may be the most helpful guide when making management decisions. In addition, we introduce the Haun and Feekes-Large staging systems.

|

The Zadoks system is becoming the most universally accepted. It’s applicable to any small grain, and its stages are easy to identify in the field.

The two-digit code system

The Zadoks system is a two-digit code. The first digit refers to the principal stage of development beginning with germination and ending with kernel ripening. Table 1 gives the nine principal growth stages.

(Video) How to identify the growth stages of wheat

The second digit (also between 0 and 9) subdivides each principal growth stage. A second digit value of 5 usually indicates the midpoint of that stage. For example, a 75 refers to the medium milk stage of kernel development.

Seedling stage

In seedling growth (principal growth stage 1), the second digit refers to the number of emerged leaves.

To be counted, a leaf must be at least 50 percent emerged. A code of 13 indicates that three leaves on the main shoot are at least 50 percent emerged. Tiller leaves are not counted.

To time herbicide applications, the seedling stage (stage 1) identifying the leaf numbers is useful.

Tillering stage

For tillering (principal stage 2), the second digit indicates the number of emerged tillers present on the plant.

Combining stages

Because stages may overlap, it’s possible to combine Zadoks indexes to provide a more complete description of a plant's appearance. For example, a plant with one tiller and three leaves could be described by either or both of the Zadoks stages 13 and 21.

As the plant matures, the Zadoks stages describing kernel development are usually used alone.

The Haun system mainly concerns the leaf production stages of development.

The length of each emerging leaf is expressed as a fraction of the length of the preceding fully emerged leaf. A 3.2 indicates three leaves are fully emerged, and a fourth leaf has emerged two-tenths of the length of the third.

Although this system can be modified, it’s not as useful when making decisions using developmental indicators other than leaf numbers. Yet, agronomists and weed scientists concerned with seedling development staging and particularly leaf numbers may find the system useful.

The Feekes-Large system has been widely used, but is becoming less popular.

It numerically identifies stages such as tillering, jointing and ripening, but lacks the more detailed attributes of the Zadoks and Haun systems.

Table 1: Condensed summary of the Zadoks two-digit code system for growth staging in barley with corresponding Feekes scale

Zadoks code:
Principal stage
Zadoks code:
Secondary stage
Description Corresponding
Feekes code
0 Germination
0 Dry kernel
1 Start of imbibition (water absorption)
5 Radicle emerged
7 Coleoptile emerged
9 Leaf just at coleoptile tip
1 Seeding development 1
0 First leaf through coleoptile
1 First leaf at least 50 percent emerged
2 Second leaf at least 50 percent emerged
3 Third leaf at least 50 percent emerged
4 4 Fourth leaf at least 50 percent emerged
5 Fifth leaf at least 50 percent emerged
2 Tillering
0 Main shoot only
1 Main shoot plus one tiller visible 2
2 Main shoot plus two tillers
3 Main shoot plus three tillers
4 Main shoot plus four tillers
5 Main shoot plus five tillers 3
3 Stem elongation
1 First node detectable 6
2 Second node detectable 7
3 Third node detectable
7 Flag leaf just visible 8
9 Flag leaf collar just visible 9
4 Boot
1 Flag leaf sheath extending
3 Boot just beginning to swell
5 Boot swollen 10
7 Flag leaf sheath opening
9 First awns visible
5 Head emergence
1 First spikelet of head just visible 10.1
3 One-fourth of head emerged 10.2
5 Half of head emerged 10.3
7 Three-fourths of head emerged 10.4
9 Head emergence complete 10.5
6 Flowering (not readily visible in barley)
1 Beginning of flowering 10.5.1
5 Half of florets have flowered 10.5.2
9 Flowering complete 10.5.3
7 Milk development in kernel
1 Kernel watery ripe 10.5.4
3 Early milk
5 Medium milk 11.1
7 Late milk
8 Dough development in kernel
3 Early dough
5 Soft dough 11.2
7 Hard dough, head losing green color
9 Approximate physiological maturity
9 Ripening
1 Kernel hard (difficult to divide with thumbnail) 11.3
2 Thumbnail cannot dent kernel, harvest ripe 11.4

Growth and development

Barley’s growth cycle has the following divisions: Germination, seedling establishment and leaf production, tillering, stem elongation, pollination and kernel development and maturity.

|

Spring barley growth and development guide (3)

The minimum temperature for barley germination is 34 to 36 degrees Fahrenheit (1 to 2 degrees Celsius).

After the seed takes up moisture, the primary root (radicle) emerges. The radicle grows downward, providing anchorage and absorbing water and nutrients, and eventually develops lateral branches.

Other roots formed at the seed level make up the seminal root system (Figure 3). These roots become highly branched and remain active throughout the growing season.

After the radicle emerges from the seed, the first main shoot leaf emerges. It’s enclosed within the coleoptile for protection as it penetrates the soil. As a result, the seeding depth should not exceed the length the coleoptile can grow, usually no more than 3 inches (7.6 centimeters).

Once the seedling emerges, the coleoptile stops elongating and the first true leaf appears (Figure 4). Then leaves appear about every three to five days depending on the variety and conditions.

Figure 5 shows a seedling at the two-leaf stage.

Growing degree units

Another way to quantify leaf appearance is in terms of accumulated heat units. Calculate heat units by summing the number of degrees above 40 degrees Fahrenheit for each day. Use the following equation to calculate heat units for each day:

Growing degree unit =[ (maximum temperature + minimum temperature) / 2] - 40 degrees F

About 100 heat units accumulate between the appearance of successive leaves in a medium maturing barley (Figure 6). Eight or nine leaves usually form on the main stem, with later maturing varieties usually forming more leaves.

Emergence of the final leaf, termed the flag leaf, is an important growth stage for timing the application of certain growth regulators (Figure 7).

(Video) Opportunities to Improve Barley Yield - theory and practice

When the seedling has about three leaves, tillers usually begin to emerge.

Barley plants’ ability to tiller is an important method of adapting to changing environmental conditions. When environmental conditions are favorable or if plant density reduces, it’s possible to compensate for this by producing more tillers.

When and how spring barley tillers

Under typical cultural conditions for spring barley, tillers emerge during about a two-week span with the total number formed depending on the variety and environmental conditions (Figure 8).

Deep seeding and high seeding rates usually decrease the number of tillers formed per plant. More tillers may form with low early season temperatures, low plant populations or high soil nitrogen levels. Some tillers initiate roots, contributing to the nodal root system.

Tiller death

About four weeks after crop emergence, some of the previously formed tillers begin to die without forming a head (Figure 9).

The extent that premature tiller death occurs varies depending on the environmental conditions and variety. Under poor or stressed growing conditions, plants respond by forming fewer tillers or by displaying more premature tiller death.

(Video) A2 | Breeding Barley for Organic Systems

Spring barley growth and development guide (9)

Spring barley growth and development guide (10)

Until jointing, the plant apex or growing point is below the soil surface where it’s somewhat protected from frost, hail or other mechanical damage.

Between three and four weeks after plant emergence, the stem’s upper internodes begin to elongate, moving the growing point above the soil surface. The head also begins to rapidly grow, although it’s still too small to readily detect through the surrounding leaf sheaths.

During the “boot” stage, the head becomes prominent within the flag leaf sheath (Figure 10).

Pollination usually takes place in barley just before or during head emergence from the boot. Pollination begins in the head’s central portion and proceeds toward the tip and base.

This event occurs six to seven weeks after crop emergence. Because pollen formation is sensitive to stress, water deficits and high temperatures at this time will decrease the number of kernels that form and may reduce yields.

You can diminish these yield reductions by planting early so pollination and early grain filling is completed before late-season stresses occur.

Once head emergence and pollination have occurred, kernels begin to develop (Figure 11). The length of the barley kernel establishes first, followed by its width. This helps explain why thin barley developed under stress conditions is usually as long as normal grain, but is narrower.

Figure 11 shows the physical changes as a kernel develops.

Watery ripe and milk stages

The first period of kernel development, designated the “watery ripe” and “milk” stages, lasts about 10 days.

Although the kernels don’t gain much weight during this phase, it’s extremely important because it determines the number of cells that will subsequently be used for storing starch. Kernels crushed in this stage initially yield a watery substance that later becomes milky.

Soft dough stage

The “soft dough” stage is characterized by kernels with a white semi-solid consistency. This period of rapid kernel growth and starch storage usually lasts about 10 days following the milk stage.

Hard dough stage

Finally, as the kernel approaches maturity and begins rapidly losing water, its consistency becomes more solid, termed “hard dough.” This is when the kernel also loses its green color (Figure 11).

Spring barley growth and development guide (11)

Psychological maturity

Spring barley growth and development guide (12)

When kernel moisture has decreased to about 30 to 40 percent, it has reached physiological maturity and will not accumulate additional dry matter. Figure 11d shows a harvest ripe kernel with lemma and palea attached. At this time, the final yield potential has been established.

An easily identifiable field indicator of physiological maturity is 100 percent loss of green color from the glumes and peduncle. (Figure 12).

Although the grain’s moisture content is still too high for direct combining, it can be swathed and windrowed. When kernel moisture decreases to 13 to 14 percent, the barley kernel is ready for combining and threshing.

Factors affecting leaf area establishment

Because photosynthesis provides energy for growth and dry matter for yield, it’s important that leaf area be rapidly established and protected throughout the growing season.

Early in the plant’s growth, the leaf blades are the major photosynthetic organs. The rate of leaf area establishment depends on temperature, but can be increased by high nitrogen fertilization and seeding rates.

Duration and impact on yield

The duration of leaf function is also important for maximum grain yield. The maximum leaf area is usually reached about heading, then declines during grain growth when the demand is great for photosynthate (products of photosynthesis).

As the lower leaves die, the upper leaf blades, leaf sheaths and heads become very important as photosynthetic sources for grain filling. For maximum yields, the last two leaf blades and sheaths, as well as the head and awns, are particularly important.

Barley also has a limited capacity to mobilize substances that were produced and stored earlier in the growing season, if conditions reduce the capacity of the plants to produce current photosynthate.

(Video) Spring Barley Agronomy - No.5: Maintain Higher Tiller Number

Anther: The part of the flower that produces the pollen.

Coleoptile: The sheath that encloses the first main shoot leaf and provides protection as it emerges from the soil.

Flag leaf: The leaf immediately below the head.

Floret: An individual flower within the head.

Glumes: The pair of bracts located at the base of a spikelet in the head.

Internode: The part of a stem between two nodes.

Jointing: Stage of barley development when stem nodes are first detected above the soil; Zadoks stage 31.

Leaf blade: The flattened portion of a leaf above the sheath.

Leaf sheath: The lower part of a leaf enclosing the stem.

Lemma and palea: Bracts (hulls) enclosing the kernel. After threshing, the lemma and palea usually adhere to the kernels.

Main shoot: The primary shoot which emerges first from the soil and from which tillers originate.

Node (Joint): A region on the stem where leaves are attached.

Peduncle: The top section of the stem between the flag leaf and the head.

Seminal roots: Roots arising at the level of the seed.

Spikelet: The flower of a grass consisting of a pair of glumes and one or more enclosed florets.

Tiller: A shoot originating from the base of the plant.

Bauer, A., Eberlein, C.V., Enz, J.W. & Fanning, C. (1984). Use of growing-degree days to determine spring wheat growth stages. North Dakota State University Extension Bulletin, 37.

Bongard, P.M. Oelke, E.A., & Simmons, S.R. (2018). Spring wheat growth and development guide.

Chang, T.T., Konzak, C.F. & Zadoks, J.C. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Haun, J.R. (1973). Visual quantification of wheat development. Agronomy Journal, 65, 116-119.

Large, E.C. (1954). Growth stages in cereals, illustration of the Feekes scale. Plant Pathology, 3, 128-129.

Phyllis Bongard, Extension content development and communications specialist; Erv Oelke, emeritus Extension agronomist and Steve Simmons, emeritus agronomist, College of Food, Agricultural and Natural Resource Sciences.

Reviewed in 2021

Share this page:

Page survey

(Video) Top tips for growing spring oats (harvest 2022)

FAQs

How long does spring barley take to grow? ›

Spring barley is typically sown from December until late April. The crop is relatively frost-sensitive, so early sowing is not common in the North. In a spring-sown crop, the three main phases (canopy formation, canopy expansion and grain filling) all last from six to eight weeks.

When should spring barley be planted? ›

Spring barley is typically sown from December until late April, with the germination rate dependent on moisture and soil temperature. Avoid working to a calendar date which can result in drilling into sub-optimal conditions where the soil can be cold and cloddy.

What are the stages of barley growth? ›

Barley's growth cycle has the following divisions: Germination, seedling establishment and leaf production, tillering, stem elongation, pollination and kernel development and maturity.

How deep should you drill spring barley? ›

What is the best drilling depth for barley? The seed should be planted as deep as possible into the moisture. The optimal drilling depth is 2 to 4 cm. For successful establishment, the root must grow far into the wet soil.

How late can you sow spring barley? ›

Drilling spring barley between the middle of February and March has historically given the best yields. Below is a guide to our suggested seed rates but drilling date, seedbed conditions and germination of seed also need to be taken into consideration. Yes.

Does barley need a lot of water? ›

The amount of water required may vary from 320 – 420 mm to 360 – 470 mm in warmer years to achieve maximum productivity. The frequency of barley watering also depends on the method of irrigation and the irrigation system capacity (mm/day), as it shows how much water the irrigation system can apply in one day.

How much nitrogen does spring barley need? ›

Standard farm practice for the spring barley has been to apply 150kg/ha of nitrogen and 50kg/ha of sulphur, while potash is applied after Christmas and diammonium phosphate (DAP) is applied at drilling.

What is the spacing of barley? ›

Barley seed spacing for timely sowing is 23 cm, for malt barley it is 18-20 cm and for late sowing is 18-20 cm.

How deep do spring barley roots grow? ›

Barley roots attain a depth of as much as 1.8-2.1 m on deep soils. The deepest roots are of seminal origin, whereas the upper soil is usually explored by adventitious roots (Reid, 1985). At common seeding rates, barley usually develops from one to six stems or tillers per plant (Reid, 1985).

What stage does barley bloom? ›

Different barley developmental stages according to the Zadoks scale. (A) At around Awn Tipping (i.e., –Z49) most barley plants (spring barley) pass through anthesis, while the spike is still enclosed in the flag leaf sheath. This is the actual “flowering time” stage of spring barley because fertilization happens now.

What temperature does barley grow best at? ›

The ideal temperature for barley germination is 12°–25°C, but germination will occur between 4° and 37°C. The speed of germination is driven by accumulated temperature, or degree-days. Degree-days are the sum of the average daily maximum and minimum temperatures over consecutive days.

How tall can barley grow? ›

General: Barley is an annual, cool season bunchgrass that grows 2–4 ft tall (Ball et al., 1996). Stems are hollow and jointed. Leaf surfaces and leaf margins are smooth, tapered, and arise on the stem above ground level (Brown, 1979).

How early can you drill spring barley? ›

​If you were able to drill spring barley in February in good conditions, that is fine. In terms of looking at an optimum drilling date, we should be looking at mid-March and into good seed beds; leaving us some time to achieve this work.

What rate do you sow spring barley at? ›

In kind growing conditions/soils optimum ear number can be established from average c. 300 seeds/m2. Where conditions are compromised or if drilling is delayed the seed rate must be increased to 400+ seeds/m2 (eg on the heavy land that will grow a second wheat).

Can you sow spring barley in the autumn? ›

Spring barley can be drilled any time from December and with drilling opportunities over autumn being few and far between, some growers may be keen to get crops in the ground.

What is the difference between winter barley and spring barley? ›

Spring barley being planted in the spring and harvested late-summer/early fall. Winter barley being planted in the fall and harvested mid-late summer. The majority of malting varieties are two row spring planted barleys.

Does barley grow in winter? ›

Barley can be used as a winter annual cover crop wherever it is grown as a winter grain crop. It is less winter-hardy than rye. In Zone 8 or warmer, it grows throughout the winter if planted from September through February.

Can you plant wheat after barley? ›

Logically following a spring barley with a feed variety of wheat would be the sensible way to go, but it is not impossible to grow a milling sample of wheat behind a spring barley crop.

What crops to rotate with barley? ›

After barley harvest, follow with double crop soybeans or other summer annuals in June. Consider planting barley with crimson clover as we did for forage to increase yield and feed value. Winter Barley can be over-seeded (frost seeded) with red clover.

Where is the best place to grow barley? ›

It grows best in well- drained, fertile loams or light, clay soils in areas having cool, dry, mild winters. It also does well on light, droughty soils and tolerates somewhat alka- line soils better than other cereal crops. With many varieties of barley to choose from, be sure to select a regionally adapted one.

Is barley hard to grow? ›

Growing your own backyard barley may sound hardcore, but it's actually surprisingly easy. Barley, Hordeum vulgare, is a forgiving crop in northern climates. In addition, it is high yielding, matures early, and is widely adapted to all but the hottest and driest conditions.

How early can you drill spring barley? ›

​If you were able to drill spring barley in February in good conditions, that is fine. In terms of looking at an optimum drilling date, we should be looking at mid-March and into good seed beds; leaving us some time to achieve this work.

How long does it take barley to emerge? ›

Barley requires 35 degree-days for visible germination to occur (Table 1). For example, at an average temperature of 7°C it takes 5 days for visible germination to occur. At 10°C it takes 3.5 days.

What can you plant after spring barley? ›

There is a bit of latitude with winter rye. Pulse and root crops are fine following spring barley just be mindful of any soil damage caused during harvest if following with winter beans or peas.

How deep do spring barley roots grow? ›

Barley roots attain a depth of as much as 1.8-2.1 m on deep soils. The deepest roots are of seminal origin, whereas the upper soil is usually explored by adventitious roots (Reid, 1985). At common seeding rates, barley usually develops from one to six stems or tillers per plant (Reid, 1985).

Can you sow spring barley in the autumn? ›

Spring barley can be drilled any time from December and with drilling opportunities over autumn being few and far between, some growers may be keen to get crops in the ground.

How much nitrogen is in spring barley? ›

Standard farm practice for the spring barley has been to apply 150kg/ha of nitrogen and 50kg/ha of sulphur, while potash is applied after Christmas and diammonium phosphate (DAP) is applied at drilling.

What is the difference between winter barley and spring barley? ›

Spring barley being planted in the spring and harvested late-summer/early fall. Winter barley being planted in the fall and harvested mid-late summer. The majority of malting varieties are two row spring planted barleys.

What is the spacing of barley? ›

Barley seed spacing for timely sowing is 23 cm, for malt barley it is 18-20 cm and for late sowing is 18-20 cm.

Can you broadcast barley seed? ›

Broadcast whichever barley crop is best suited to your locale, sowing the first half of seeds in one direction then the other half perpendicularly. This method of sowing will give home garden barley the best coverage. For a winter barley cover crop, sow seed from September through February in Zone 8 or warmer.

In which month barley is sown? ›

Barley is a rabi season crop. It should be sown between October and November. Row to row and plant to plant distance should be between 20-22.5 cm and 10-12 cm approximately. Sowing should always be done with the help of seed drill machine.

Can you plant wheat after barley? ›

Logically following a spring barley with a feed variety of wheat would be the sensible way to go, but it is not impossible to grow a milling sample of wheat behind a spring barley crop.

Why is barley a good crop? ›

Inexpensive and easy to grow, barley provides exceptional erosion control and weed suppression in semi-arid regions and in light soils. It also can fill short rotation niches or serve as a topsoil- protecting crop during droughty conditions in any region.

Is barley an annual crop? ›

Cereal grain production: Barley is a cool-season annual grass that produces grain for human and animal consumption. Because there are both summer and winter varieties, barley can be grown at a wide variety of locations.

What crops to rotate with barley? ›

After barley harvest, follow with double crop soybeans or other summer annuals in June. Consider planting barley with crimson clover as we did for forage to increase yield and feed value. Winter Barley can be over-seeded (frost seeded) with red clover.

What is the best way to grow barley? ›

Barley grows best in cool ground--ideal temperatures hover right around freezing. For winter barley, October is the best time to plant. For spring barley, plant in January. Sow the seeds in the rows, ensuring that there are 20 to 25 seeds per square foot of space.

Which type of soil is best for growing barley? ›

Sandy loam to loamy stand soils of Indo-Gangetic plains having neutral to mild saline reaction and medium fertility are the most suitable types for barley cultivation, however, it may be grown on a variety of soil types, viz; saline, sodic and lighter soils.

Videos

1. Nitrogen Recommendations for Spring Malting Barley Eoin Lyons
(Teagasc Crops)
2. Food Functionality of Naked Barley
(eOrganic)
3. Growth Stages in Cereal Crops
(Alberta Agriculture, Forestry and Rural Econ. Dev.)
4. How Planting Date Affects Growth of Winter Wheat
(Pioneer Seeds United States)
5. Growing Barley
(Iowa Ingredient)
6. Wheat School: Identifying the flag leaf
(RealAgriculture)
Top Articles
Latest Posts
Article information

Author: Manual Maggio

Last Updated: 01/23/2023

Views: 5616

Rating: 4.9 / 5 (49 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.